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Abstract—The proliferation of the big data analysis and the
wide spread usage of public/private cloud services make it
important to expand the storage capacity as the demand is
increased. The scale-out storage is gaining more attention since
it can inherently provide scalable storage capacity. The flash
SSD, on the other hand, is getting popular as the drop-in
replacement of the slow HDD, which seems to boost the system
performance somewhat at least. However, the performance of
traditional scale-out storage system does not get much better
even though its HDD is replaced with the flash based high
performance SSD since the whole system is designed based on
HDD as its underlying storage device. In this paper, we identify
performance problems of a representative scale-out storage
system, Ceph, and analyze that these problems are caused by
1) Coarse-grained lock, 2) Throttling logic, 3) Batching based
operation latency and 4) Transaction Overhead. We propose
some optimization techniques for flash-based Ceph. First, we
minimize coarse-grained locking. Second, we introduce throttle
policy and system tuning. Third, we develop non-blocking
logging and light-weight transaction processing. We found that
our optimized Ceph shows up to 20 times improvement in
the case of small random writes and it also shows more than
two times better performance in the case of small random
read through our experiments. We also show that the system
exhibits linear performance increase as we add more nodes.

1. Introduction

As we meet the big data era, the need for data capacity is
increasing exponentially and the demand for efficient storage
system is getting out-of-bound. Hence the scale-out storage
is getting more attention compared to the traditional scale-up
storage. Generally the scale-up storage system is composed
of two data managing controllers and an assembling struc-
ture joining storage array and SAN. However, this structure
has limitation that its bandwidth is limited by the capacity
of the controllers. If the demanding bandwidth is more than
what the controllers can provide, the whole system has to be
re-built from the scratch. Unlike the scale-up structure, the

storage system of scale-out structure can expand its capacity
via commodity server expansion as the demand is increased.

As Amazon and Google successfully operate pri-
vate/public cloud service and other successful application
cases based on these services are increasing, many compa-
nies either construct and use cloud infrastructure including
scale-out storage or provide these services. The typical
examples of the scale-out storage system are Swift [4],
Ceph [3] and Glusterfs [5]. Ceph gets the most spotlight
nowadays [2] because Ceph can provide various storage
types as needed by the current storage system. For instance,
Ceph can provide block storage service when it supports VM
based infrastructure, it can provide object storage service
when it supports simple storage service, and it can also
provide traditional POSIX based file system interface.

However, these current scale-out system such as Ceph
is designed with HDD as its basis, which is good for large-
sequential data access [1], [6]. Therefore, their performance
can be scalable when the data access pattern is sequential.
For random access pattern, their performance have a lot to
be desired. This is not suitable for the scale-out structure
because scale-out system needs to be scalable regardless of
the underlying workload pattern and it does not work well
with the present data processing systems [7], [8], [18] which
require handling a lot of small data. These performance
problem is due to not only the scale-out storage system
design which is based on HDD [9], but also the limitation
of the HDD itself, which is its high latency due to seek
overhead and inherent sequential nature. Hence the strategy
of replacing HDD with SSD has increasingly been adopted
in order to improve random performance. However, the
drop-in replacement strategy does not work well in reality.
For example, previous studies brought up performance re-
duction problems and suggested solutions when DAS (direct
attached storage) format was used [11], [12]. However,
different structure such as NAS (network attached storage)
introduces different problems and a new solution might be
required. According to our experiments, the sequential I/O
performance of all flash Ceph reached its capacity but its
random I/O performance was less than 10K IOPS for write
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only workload. The other current scale-out system, Gluster
filesystem has the same problem. If all flash scale-out system
can provide good sequential I/O performance only, adding
more HDDs would be a better solution without the need to
use SSD at all.

In this paper, we have identified the performance prob-
lem of the representative open source scale-out system,
Ceph, with all flash media and proposed solutions to mit-
igate those problems. First of all, we minimize coarse-
grained locking to exploit the parallelism of the SSD. Ceph
employs many locks for consistency. These locks have virtu-
ally no adverse effect with HDD since HDD has a very large
response time. SSD, on the other hand, has faster response
time and these locks prevent Ceph to fully utilize the SSD.
We alleviate these heavy locks to guarantee better perfor-
mance. Second, we optimize internal throttle logic. Throttle
logic is needed for rate limiting of dispersed file system
components. When this part is not unified, many problems
can occur. Therefore, we found optimization method for this
part and improved performance. Third, we tackle the logging
system. Ceph mainly uses logging for debugging purposes.
However, these logging poses severe overhead when HDD
is replaced with SSD since it is now in the critical path. We
solved this problem by making the logging non-blocking.
Fourth, we lightened transactions. We were able to reduce
I/O overhead and make read and write do not occur con-
currently. With these optimizations, we have obtained 20
times better performance with small random write (4K)
workload. We also observed two times better performance
in the case of random reads (4k). In addition there is now a
positive linear relationship between the number of nodes and
the performance. There is a commercial all flash scale-out
storage which solved these performance issues to provide
intrinsic performance via similar study with ours. SolidFire
[10] is a representative example of a commercial all-flash
scale-out storage and it provides deduplication/compression,
QoS with the performance of random read 200K and 100K
random write. However, SolidFire gives us low sequential
performance due to fragmentation. We have developed a
new Ceph which has similar random I/O performance as
SolidFire and superior sequential performance via this study.

Our optimizations are based on existing approaches [26]
[27] [28] [29]. However, besides using these ideas, we en-
hance the pending queue to minimize coarse-grained locks.
Also, in light-weight transaction, we employ write through
caching and remove additional software overheads (system
call, lock). We integrate all these approaches and evaluate
the impact of each of them on a common test bed. Based
from our experience, we also discovered other overheads in
the case of throttling and system tuning and fixed these as
well.

2. Problem analysis

2.1. Performance

Figure 1 shows the result of 4K Random write/read per-
formance using a Ceph cluster with all flash SSDs without

Figure 1: Performance of Ceph using SSDs

any modification in Ceph. We used 4 server nodes equipped
with 40 SATA3 SSDs (80% of a whole disk are filled by
the data). The details of the experimental environment can
be found in Section 4. To test the performance of RBD
(RADOS block service), clients are connected to OSDs
(Object storage device) via KRBD (Kernel Rados Block
Device, Linux kernel module for Ceph block device) module
which can export block device to clients.

We observed the following from the result of random
I/O performance. First, the random write performance only
reaches up to 16K IOPS, even though clients generate
enough load by increasing the number of threads. When the
number of threads is increased more than 32, the latency
is increased sharply with the IOPS remaining virtually the
same. Second, In random read case, the number of threads
affects the performance. With less than 32 threads, Ceph
showed low IOPS and high latency. However, with 64
thread, latency is getting better even through contention is
increased. We believe this phenomenon is caused by the
structure of Ceph which employs batching based design to
fully utilize the HDDs.

2.2. I/O flow on Ceph

Figure 2.(a) shows overall I/O structure in Ceph. Ceph
is an object based scalable file system. The objects are
grouped by PG (placement group) and distributed using
CRUSH algorithm [3]. Ceph guarantees strong consistency.
Therefore, read operation is handled by primary OSD and
write operation is handled sequentially. Strong consistency
has a weak point that it has lower performance than eventual
consistency [23] [24]. However, strict consistency is needed
in order to support block storage service which requires
reliability. Ceph uses splay replication [13] where ack is
sent to client when all of the journal writing, both for the
primary and replicas, is completed.

Figure 2.(b) shows detailed I/O structure in OSD (step
1 - 7). Since Ceph does not need communication between
metadata server and client when processing data I/O by
using CRUSH algorithm, we will look into only the commu-
nication which is occurred between OSD and client while
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Figure 2: Ceph I/O Flow

Figure 3: Ceph latency analysis for write path

processing write and read, not overall I/O path in the cluster.
When OSD receives a write request from client, messenger
thread which is in charge of processing network packets
sends data requests to PG queues. PG is object group that
composed of the objects (1). If a PG queue is filled up
with enough requests, OP WQ thread is woken up and
processes data request after acquiring PG Lock. For a write
request, OP WQ thread writes the log, sends replication
request to replicas and submits the write request to journal
while holding the PG lock (2),(3). On the other hand, a
read request is processed by issuing the read request to the
filestore and relaying the reply back to the client without
journaling. In the case of write, filestore makes a transaction
which includes writing data, medata related with object and
PG. The journal completion thread submits a write request to
filestore after writing journal data (by direct I/O) (4), then
data is written to filesystem asynchronously (by buffered
I/O) obeying the write ahead logging principle. After writing
is completed in the filestore (5), the primary OSD waits until
it receives acks from replicas before sending the client an
ack message (6),(7).

After careful analysis of Ceph I/O structure, we have
found the following characteristics. 1) Each I/O request
needs PG based lock and holds the lock for quite a long
time. 2) Many operations such as completion processing for
journal and writing data as well as ack processing also need
PG lock resulting in considerable overheads. Therefore, the
writing journal and completion processing can be delayed

due to lock waiting which makes negative impact on per-
formance.

2.3. Latency Measurement

Figure 3 shows the result of latency analysis in the write
path (step 1 - 7). This figure depicts the control flow from
the point when the message head is received to the point
when the ack message is sent to the client. First, message
processing in messenger thread takes about 1 ms. We believe
that it is reasonable time to process a message (from start
point to Operation WQ Dequeue, (1)) After processing the
messages, the request is enqueued to the PG queue and it
takes about 3 ms which is quite a long time. (from Operation
WQ Dequeue (1) to Submit Op to PG Backend, (2)) This
delay is mainly due to operations such as sending secondary
OSD replication, making logs and reading metadata. Im-
portant thing is that these operations are processed while
holding a PG Lock. (3) will be explained in Section 2.4.
After completing journal writing (Journal Write complete
& enq, (4)) which takes about 8.228ms, it again spends
extra 1.1 ms to send the event of journal completion to
PG backend (Send to PG Backend, (5)). This is because a
single thread(finisher) handles all of the completion works
for journal and it also needs PG Lock.

In addition, another 1.1 ms is needed when receiving
commit event from replicas (from FirstSubOp & Second-
SubOp Commit Received to Send to PG Backend, (6),(7)).
We believe that the reason for these operations taking too
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Figure 4: Performance comparison (Log vs No log)

long time is PG lock overhead because all the operations
above need to acquire PG locks as shown in the Figure 2.b.
From this analysis, we have observed that the delay caused
by the PG lock can raise up to 9 ms when the total latency
of a write request is about 17 ms.

2.4. Logging and filestore overhead

We found following two phenomena about logging dur-
ing performance test. (This is not file system logging in
Ceph, just for log that prints in /var/log.) First, random
write performance is improved when turning off logging
option. Second, sequential write performance is not changed
even through logging is turned off. These results mean
that current logging system of Ceph causes performance
problems when low latency is needed.

Figure 4 shows the result when PG lock minimization
and system tuning are applied. In the case of No log, high
performance is sustained a few seconds at point A. Then,
performance fluctuation begins from point B. We found
that filestore queue as mentioned in Figure 2 (marked as
contention) is growing as time passes. Therefore, fluctuation
begins from point B. This is because the filestore can not
process the I/O requests as fast as they arrive, which results
in degraded OSD cluster performance. The contention in
filestore prevents receiving any more input from clients since
Ceph controls the number of operations doing journaling and
writing. Therefore, requests are backed up until filestore is
available (Figure 3.3) with PG lock.

3. Design and Implementation

3.1. Minimizing coarse-grained lock

As described in Section 2.3, current Ceph has huge
overhead since PG based coarse-grained locking is used.
Figure 5 and Figure 6 show the design of our optimization
for PG lock. We focus on three parts discovered in Section 2
where the PG lock is held while waiting; processing requests
from PG queue, processing completion for writing journal
or filestore, and handling ack.

First of all, we additionally implement a pending queue
in order to optimize process without unnecessary waiting.

Figure 5: PG Lock based pending queue

Figure 6: Reducing critical path and dedicated processing

As shown in Figure 5, when an I/O request is delivered from
a client, it is enqueued to the appropriate PG queue by the
worker (OP WQ thread) after obtaining the corresponding
PG lock. If another request belonging to the same PG arrives
before the first request is finished, it has to be blocked since
the necessary PG lock is already held by previous request,
which in turn blocks the whole process until the PG lock
becomes free. To alleviate this blocking, we introduce a
pending queue for each PG queue so that the subsequent
requests will not be blocked if they do not belong to the
same PG. By introducing this pending queue, worker 2
can process OP 3 as described in Figure 5 because OP 2
is inserted in pending queue without blocking OP 3. The
pending queue not only removes unnecessary blocking when
multiple requests arrive at the same time but also protects
data ordering per PG because data requests are enqueued
to the pending queue sequentially. Therefore, the order be-
tween read and write or between write and write for the same
PG is strictly enforced. Second, we reduced the size of the
critical section governed by PG lock in case of processing
completion and enhanced parallelism by adding batching
based dedicated worker and OP lock. As shown in Figure 6,
commit worker (responsible for journal completion), applied
worker (data completion) known as finisher in Section 2, and
ack worker all request PG lock. Each of these workers is
modified to handle minimal operations while holding OP
lock such as reference counting and the rest of the works
which need PG lock are deferred. A dedicated completion
worker is introduced to process these deferred operations in
a batching manner. Third, we speed up the ack processing.
From the latency analysis (in section 2), we found that the
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latency related to ack processing such as sending, receiving,
logging and counting is high. This is because ack processing
and data processing share the same path and compete with
one another (OP WQ thread in Figure 3), even though the
only purpose of ack message is to notify completion of data
request. The fact that the ack messages are enqueued to
the PG queue significantly increases the lock contention.
We modified ack processing, so that the ack messages are
processed right away without enqueueing them to the PG
queue.

Our design does not revise the entire lock scheme.
Although highly tempted, we did not revise the entire PG
lock scheme since it is the basis of the recovery system. PG
lock protects data ordering and writing pg log sequentially.
For instance, PG log is used to recover PG metadata which
represents system status (via synchronizing PG status be-
tween Primary and Replicated OSD). Therefore, it should be
written sequentially in order to do rollback to the previous
state. PG lock also helps data ordering for strong consis-
tency. Strong consistency, which is a core design principle
in Ceph guarantees to read the most recently written data,
therefore strict ordering is needed. If we totally revise the
traditional lock scheme in Ceph, we can not guarantee
system reliability including many critical operations which
depend on this lock scheme as mentioned above. Therefore,
we look for a solution which maintains data ordering per
PG without changing basic lock scheme while reducing the
overhead.

In our design, we bring out performance improvement
via the following optimizations. 1) The messenger thread
can process network packets faster from client because
I/O requests can be queued without delay 2) Threads are
utilized fully because the delay which caused by PG lock
is minimized. 3) Faster response is possible because ack
messages are processed without delay. 4) Parallelism is also
enhanced because a dedicated thread handles delayed works.
Multiple completion per PG can be processed at once.

Our design enhances latency while protecting data order-
ing per PG, resulting in no inconsistency. One weak point is
that client can receive unordered write acks from OSD. This
is because completion worker scheme (batching, fast return
ack) may return unordered acks even though OSD writes
data sequentially. Therefore, we added logic that sends client
sequential acks if a client wants to receive ordered acks as
requested. Completion worker can sort these unordered acks
before sending them to clients.

3.2. Throttling and system tuning

In this section, optimizations for throttling and system
tuning is explained. By system tuning, we mean not the
code change but changing control options for TCP/IP stack
or library configurations.

Minimizing coarse-grained lock explained in the pre-
vious section can decrease latency, but this was not suf-
ficient. Performance fluctuation is still observed when I/O
tests continue even decreased latency. It is suspected that

fluctuations is caused by the throttle logic in Ceph be-
cause fluctuations are being repeated. However, this phe-
nomenon is not fixed by changing one parameter. Perfor-
mance degradation disappears only when combination of
parameters for throttle are fixed together. The first parameter
is filestore queue max ops, which controls the maximum
number of operations in journal and filestore, and the sec-
ond parameter is osd client message cap which controls
the maximum number of messages that OSD can handle.
Theses parameters are set based on HDD capacity. Thus
performance degradation can occur even if Ceph is applied
our optimization that can process request faster. Most of the
distributed filesystems have throttle logic in order to support
balanced performance or QoS, and export a tunable param-
eter to change the throttle policy easily. However, finding
a suitable parameter is difficult without the knowledge of
the internal I/O structure [14]. In particular, understanding
the entire logic for throttle is needed because each part
of Ceph (such as filestore, messenger and journal) have
inherent throttle policy. Throttle parameter is determined
as 30K IOPS, because A single block device (consist of
3 SSDs) can perform 30K IOPS in sustained state. Throttle
parameter for journal has no impact because writing journal
(NVRAM) is very fast.

In system tuning, the first optimization is changing mem-
ory allocator. As a result of CPU profiling using perf tool,
we could tell most of CPUs used for Ceph was consumed
by memory allocator. Current Ceph uses tcmalloc library
without using memory pool internally. This is not a problem
in large sequential workload. However, small random work-
loads need more responsibility and parallelism for memory
handling than large sequential workload so memory alloca-
tor causes overhead in I/O path due to frequent allocation
and release [22]. We replaced tcmalloc with Jemalloc since it
outperforms other methods when dealing with small random
workload. (among tcmalloc, jemalloc and standard malloc)
The second optimization is to disable tcp nagle algorithm.
In the performance as shown in Section 2.1, latency is high
in the case when fewer requests are handled. This problem
is caused by TCP nagle algorithm in Linux TCP/IP. Thus
we simply disable this algorithm.(KRBD enable TCP nagle
in Centos 7.0) TCP nagle algorithm is known to show good
performance with large sequential workload but has worse
performance with small random workload [21].

3.3. Non-blocking logging

As we mentioned in section 2.3, the performance of
Ceph depends on whether logging (for debugging) is turned
on or off, which means that logging system had considerable
overhead. Performance is improved if logging is simply
turned off. However, production systems need logging be-
cause it gives valuable information in case of system failure
or checking system behavior.

Ceph log system has two different modes for logging.
First, in-memory logging when the system writes logs in
the memory unless there are some abnormal events. Second,
filestore logging when the system writes logs to the storage
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Figure 7: Light-weighted transaction

directly. In the case of in-memory mode, the system main-
tains a certain amount of log entries. Therefore, the first log
entry is overwritten when the number of log entries reaches
the limit. These logs contain the information regarding the
progress of OSD operations. Although this is not critical,
Ceph still waits for the logging to be completed before pro-
ceeding resulting in non-negligible delay even for memory
writing. We made all the in-memory logging non-blocking
without compomising the integrity of the Ceph system.

When an I/O request is processed in the internal OSD,
log entries are created in each step of I/O path and are
transmitted to the logging thread. However, logging is based
on HDD style processing that has only a single write thread.
Therefore, when small I/O is requested, the logging some-
times takes longer than the actual I/O itself.

We have changed all the logging from synchronous to
asynchronous so that it will not be on the critical path
anymore. The I/O request no longer waits for the logging.
In addition, we made the single thread structure, which is
responsible for logging, to be multi threaded so that parallel
processing is possible to exploit the SSD characteristics. We
also tacked the overheads related with string operations The
way current logging is handled is to make a new log entry
each time it is needed, where the log entry was constructed
as string of words using standard library which results in
quite an overhead. Because it causes memory allocation
overhead as mentioned in Section 3.2. we introduced a
log cache where the log entry strings can be stored and
retrieved without making them over and over again if the
same log is stored multiple times reducing the number of
string operations as well as the new entry assignments.

Non-blocking logging used limited size of memory be-
cause OSD can process a certain amount of operation by
throttling logic as mentioned in Section 3.2. A disadvantage
of non-blocking logging is that the logs can be lost in the
case of sudden system failure (power off). However this can
also happen in existing logging system. Also, it can be easily
rectified if NVRAM is used.

3.4. Light-weight transaction

As mentioned in Section 2.4, filestore in current Ceph
is unable to handle high speed I/O and causes performance

drop while handling write operation. Even though OSD
sends ACK right after completion of writing journal and
the performance of writing journal directly affects to the
entire write performance, as explained earlier, eventually
writing performance of filestore determines performance of
write operation if writing speed in filestore is not sufficient
because journal size is not infinite. For this reason, we make
light-weighted transaction through optimization techniques
as following. First, number of operation used in a trans-
action is reduced. A write operation is actually written as
a transaction along with other metadata when Ceph writes
the requested data. Figure 7 shows how requested data is
stored in file system (OP WRITE), PG log and OMAP
data are stored (OP OMAP SETKEYS) in Key-value DB
(Level-DB or Rocks DB), and object metadata is stored
(OP SETATTRS) as xattr in file system. The redundancy
is removed and operations in this transaction is minimized.
We also reduced system calls and operations that checks
metadata to one time per each transaction. Second, the
situation where read and write operations are requested si-
multaneously is prevented by using write through cache. As
mentioned earlier in [15], there is considerable performance
degradation when read and write requests are submitted at
the same time to the SSD. To prevent this performance
degradation, we used caching of objects and PG metadata
to avoid reading metadata when write requests are being
handled (Figure 7.b).

We have considered the following points in implementat-
ing the light-weight transaction. First, we reduced the use
of Key-value DB and system calls. As described earlier,
Ceph uses Key-value DB to write metadata. The amount of
written data is small (around 12 ∼ 729 bytes), but it makes
many operations in small sized I/O pattern. In this case,
when write request is continued, latency of each requested
operation becomes unstable because key-value DB performs
compaction or construction of immutable table [16] [17].
Also, considerable amount of data is written additionally due
to the write amplification inherent in LSM based Key-value
DB. According to our observation, when a client writes a
total of 2GB using 4MB block size, 30MB of additional data
is written. However, if the block size is 4KB instead, 2GB of
additional data is written. Performance degradation caused
by this write amplification problem become much severe
when SSD is in sustained state than in clean state. Because
SSD in sustained state needs erasing and handling mapping
table before writing. The solution is to minimize operations
in a batching manner when transaction is written to Key-
value DB. Because less operation can not only enhance
responsiveness of Key-value DB but also results in less
merge operations.

Also, we have minimized the number of system calls.
Since various modules (Network, Key-value DB, Cache, File
Store and Journal) use system calls, the total number of
system calls are significant. Furthermore, various types of
system calls such as (open, write, stat) are repeated to the
same file especially in filestore. We believe this is to facili-
tate the readability and reusability of modules in Ceph code
base. However, in terms of system performance, it is purely
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not necessary. We have removed all the redundant systems
calls. Next, we have removed the system call set-alloc-
hint (fallocate) from the path handling random workloads.
Although it could be beneficial for sequential workloads,
it is of no use for random access. When using HDDs,
it was of no consequence since the random access is so
slow for HDD. Second, we have removed reading meta-
data from storage during write operation. Our performance
test showed that considerable amount of read operations
are always induced while handling write operation due to
metadata (around 15MB/s per disk). General file system
writes metadata along with writing data. However, reading
metadata from storage is required if metadata is not cached.
In this case, writing metadata needs Read-Modify-Write.
In distributed file systems like Ceph, a greater amount of
metadata than local filesystem is read because metadata
of the distributed file system (such as PG Log, Rollback,
Snapshot information etc.) that is loaded on local system is
needed, besides metadata of local system itself. Thus, we
avoid reading metadata from storage by maximizing the use
of cache (write through) because most of the metadata exist
in memory. Write through cache has an advantage that can
avoid inconsistent state because data is written directly to
storage. Even though SSD provides high IOPS and relatively
better performance in mixed pattern, latency increases when
load of reading metadata is piled up along with overhead of
Key-value DB as described earlier. Therefore, minimizing
reading operation is key to improving the performance of
write operation.

Metadata cache has a disadvantage due to limited size.
As object data is growing, caching has less effect because
system can not manage all of the metadata. However most of
distributed file system adapt 4 MB as default block size. In
the case of 4MB block size, 10TB capacity needs 2.5GB
if each object needs 1KB metadata (most of the object
metadata are under 270 bytes in reality). Typical storage
system uses less memory, because only a certain amount of
memory is used for buffer. Thus, we think memory usage
of metadata cache is reasonable. Actually, each OSD node
of Ceph uses only less than 10GB memory (total memory
usage, except for buffer cache) if the storage capacity of
the Ceph cluster is completely utilized (each node has 5TB
storage capacity).

4. Evaluation

We have evaluated the throughput and latency of Solid-
Fire, which is a commercial all flash scale-out system, Ceph
0.94.4 which is community version of Ceph and optimized
Ceph (AFCeph) based on 0.94.1 community version and
compared these three systems. We call optimized Ceph
AFCeph. Our evaluation is based on block storage, but the
performance of object and file storage also would be similar
because OSD in Ceph, which is the main optimized part, is
common for all three storage system.

Figure 8: Setup of the experiment

Figure 9: Performance improvement with clean state SSDs
(fio, direct, 4K random write)

4.1. Experimental setup

Figure 8 describes our experimental environment. The
number of client node was five and each client node had
up to 16 VMs and total of 80 VM were created and tested.
We used PMC 8GB NVRAM product as journaling disk.
Each OSD node used one NVRAM and the number of OSD
daemons per node was 4 so each OSD daemon used 2GB
for the journal usage. Also, each OSD node is with 10 SSDs
and OSD 1∼4 uses 3,3,2,2 SSDs respectively and SSDs are
tied up as RAID 0. If more than 4 OSD are used, we do not
achieve performance gain because OSDs used significant
CPU. We used FIO tool on each client for performance
evaluation and set replication factor as 2. Clean state means
that Ceph and SSD are not fully filled by the data and
sustained state means that the SSD is already saturated by
sufficient data.

4.2. Performance improvement

Figure 9 shows performance improvement for each op-
timization scheme as described in the previous sections.
We used SSD of clean state to test and created block
device (100GB per client) through KRBD. Note that this
is clean performance (SSD, local filesystem and Ceph are
initial state). Thus Community Ceph has better performance
because the small image size causes less reading metadata.
We can see the evaluation result of non-blocking logging
and light-weight transaction including the optimization re-
sult of previous step. Our evaluation results show that the
performance improvement is more than two times.
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Figure 10: Vitual Machine performance comparision (Community Ceph: (a, b, c, g, h, j), AFCeph: (d, e, f, j, k, l))

4.3. Virtual machine performance

We increased the number of VMs on each client to
test how much performance the Ceph cluster could achieve
as the load was increased. In VM test, we created VMs
on client nodes through KVM and made one block device
(RBD) per VM. X axis is the number of total VMs. For
example, 10 means 2 VMs per client node, 15 means 3
VMs per client node. Each VM had 1 image and we tested
up to 80% of a whole disk capacity after we reached sus-
tained state. The VM test result is shown in Figure 10. We
summarize the results and select the best results from FIO
test which is executed using increasing number of threads
and iodepths.

4KB random write results show that the Community
Ceph has 22 KIOPS as its maximum performance with
latency of 58.2 ms in case of 80 VMs. Also, in the case
of 40 VM cases or higher, the latency is increased rapidly
because reading operation on metadata affected latency
while the load is getting heavier. On the other hand, the
AFCeph shows the maximum performance of 81 KIOPS
and its latency was 7.9 ms. This figures show the AFCeph
performed four times better with around 75% smaller in
latency when it is compared to that of Community Ceph.
Also, the latency is better on all points from 10 VM to
80 VM test. This means that latency reduction scheme
in lock optimization and non-blocking logging had actual
effects on reducing latency in the case of small sized I/O
and avoiding read operation during write request in light-
weighted transaction which prevents an explosive increase
in latency. 32KB random write results show the AFCeph

shows almost 4 times better performance with the smaller
latency which is less than 5 ms compared to Community
Ceph. The performance is declined for the AFCeph at the
40 VM case or higher because the journal is full. Therefore,
flush operation is needed and fragmentation by bypassing
system calls like set-alloc-hint for small sized block causing
random workload. An NVRAM used as journal disk is faster
than SSDs being used as filestore. If journal is full with its
data, the system gets blocked until some of data in journal
is flushed to filestore. As a result, performance fluctuation is
observed. In Community Ceph, its slow performance does
not generate journal data to fill up the NVRAM. In the
sequential write case, Community Ceph and AFCeph show
similar performance (except for VM 20, 40, 60 cases). In
these results, the performance fluctuation is also observed
and this is because NVRAM is full with journal data as
explained above.

4KB random read performance results show the AFCeph
shows higher IOPS with less latency than Community Ceph
in the fewer numbers of VMs, i.e. under lighter load test
in the case of less than VM 40. Under the heavy load
test, the AFCeph shows similar latency with Community
Ceph but 2 times higher IOPS than Community Ceph.
Enqueuing optimization with pending queue makes IOPS
is increased because the read requests of other PG can be
processed without delay. Also, non-blocking logging and
memory allocator changing causes read latency reduction.
32KB random read performance test shows the similar result
to 4KB result and AFCeph is superior to Community Ceph.
In the sequential read case, Community Ceph and AFCeph
show similar performance.
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Figure 11: Virtual Machine max performance comparison: SolidFire vs AFCeph vs Community Ceph

Figure 12: AFCeph scale-out test

4.4. SolidFire vs AFCeph

We wanted to see whether AFCeph has a reasonable
performance compared to that of SolidFire which is one
of the most competitive solution for All-Flash scale-out
storage. SolidFire used the same configurations with Ceph
for the fair comparison. It was consisted of 4 nodes and each
node had 10 SSDs and a NVRAM. Network configuration
is 10Gb x 2 bonding which is one more than in Ceph but
public and private network are not separated. Deduplication
is enabled (mandatory options). Fully random data is used
for test in order to see real I/O performance. Therefore, the
result of SolidFire includes overhead of deduplication pro-
cessing. Figure 11 shows the best VM-based performance
results considering IOPS and latency.

In a result of 4KB random write (Figure 11.a, c), the
Community Ceph shows 3 KIOPS because we extract the
values from minimal latency (5.7 ms) to compare to Solid-
Fire and the AFCeph with similar latency. 3 KIOPS is
almost the same as HDD-based Ceph. The AFCeph has 71
KIOPS with 3.4 latency. This result is less than SolidFire
in IOPS (78K) and 1 ms higher in latency. But AFCeph
has 20 times higher IOPS and 2 ms lower latency than
Community Ceph. AFCeph has higher performance than
both Community Ceph and SolidFire in the 32K random
write case. SolidFire is optimized for using 4KB fixed chunk
size for deduplication so its performance is decreased after
non-4KB workload.

In the case of random read, the AFCeph shows an
admirable result compared to others. Specially SolidFire
performance is degraded significantly in 32KB case. In
sequential workload (Figure 11.b, d), both performance of
community and AFCeph is 3 or 4 times faster than SolidFire.
As we mentioned before, in SolidFire, client’s sequential
workload would be random workload in the storage cluster
because SolidFire divides all inputs to 4KB unit for dedu-
plication.

4.5. Scale-out performance test

In this experiment, we examined the scalability of the
system with increasing the number of OSD nodes and
clients. (Figure 12) The same hardware and software was
used for this experiment and Figure 11 shows the result.(One
exception is that SSDs are clean state) For both the sequen-
tial and random workloads, (Figure 12.a) the performance
is increased with the increasing number of OSD nodes
regardless of the block size and RW type.

In the case of random read with 16 nodes, however,
the performance improvement is not as big as we expected.
(Figure 12.a) We think this issue is due to the high CPU con-
sumption of Ceph’s Simple Messenger which handles all of
network processing in Ceph because messenger’s structure
is not scalable and have receiver and sender threads for each
connection. Except this case, all workload performances are
directly proportional to the number of OSD nodes.
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5. Related Works

SolidFire [10] has advanced features such as deduplica-
tion and compression for SSD endurance and data efficiency,
and per-volume QoS. Its architecture is designed for dedu-
plication because it calculates hash of 4KB unit chunk and
saves it in NVRAM. However, unlike Ceph, it needs meta-
data server for data communication and supports only block
storage service such as iSCSI. Its deduplication architecture
using 4KB fixed unit chunk leads to fragmentation and low
sequential workload performance.

To reduce frequent context switching and lock con-
tention, minimizing coarse-grained lock [25] optimization
uses similar scheme with interrupt coalescing [26] by mak-
ing dedicated thread for completion processing. However, by
newly adopting pending queue structure during I/O issuance,
thread utilization is raised and unnecessary ack processing
during lock processing is removed.

There is an approach that tries to optimize random per-
formance for Ceph [27]. They also tuned memory allocator,
tcp nagle. However they do not address Throttle, PG lock,
logging, processing transaction.

Classifying critical write and handling critical write are
important for performance [28]. They send critical writes as
well as non-critical writes with dependency to critical write
to NVM in order to minimize latency. Our non-blocking
logging uses similar approach.

IndexFS [29] uses similar approach as light-weight
transaction. For instance, it uses batched insertion to min-
imize level DB overhead and uses metadata cache (write
back) on client. However, our optimization is based on
server side and uses batched insertion in the case of inner
operations in transaction. Also, light-weight transaction uses
metadata cache (write through) in order to avoid read-
modify-write. On the other hand, IndexFS uses write back
cache for metadata in order to make bulk insertion.

6. Conclusion

This paper analyzed the problems that occur when scale-
out storage system uses SSD and suggest various optimiza-
tion techniques such as lock optimization, non-blocking
logging, and light-weight transaction to solve the perfor-
mance problems. As a result, we obtain comparable random
workload performance with the commercial solution, and a
far higher sequential workload performance than with the
commercial solution.

Our works does not influence Ceph negatively because
it preserves the basic semantics of Ceph. Additionally, we
verfified the stability using the Ceph QA suite which is
called Teuthology (we passed RBD test). We submitted lock
optimization patch to Ceph community. Other optimizations
will be submitted after codes are reworked for latest Ceph
version.
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