
Design of Global Data Deduplication for A Scale-out Distributed Storage System
Myoungwon Oh∗§, Sejin Park† , Jungyeon Yoon∗, Sangjae Kim∗, Kang-won Lee∗,

Sage Weil¶, Heon Y. Yeom§, Myoungsoo Jung‖
∗ SK Telecom, †Keimyoung University, ¶ Red Hat, § Seoul National University, ‖Yonsei University

Email: {omwmw,jungyeon.yoon,sangjae,kangwon}@sk.com, baksejin@kmu.ac.kr
sweil@redhat, yeom@snu.ac.kr, mj@camelab.org

Abstract—Scale-out distributed storage systems can uphold
balanced data growth in terms of capacity and performance
on an on-demand basis. However, it is a challenge to store
and manage large sets of contents being generated by the
explosion of data. One of the promising solutions to mitigate
big data issues is data deduplication, which removes redundant
data across many nodes of the storage system. Nevertheless,
it is non-trivial to apply a conventional deduplication design
to the scale-out storage due to the following root causes.
First, chunk-lookup for deduplication is not as scalable and
extendable as the underlying storage system supports. Second,
managing the metadata associated to deduplication requires
a huge amount of design and implementation modifications
of the existing distributed storage system. Lastly, the data
processing and additional I/O traffic imposed by deduplication
can significantly degrade performance of the scale-out storage.

To address these challenges, we propose a new dedupli-
cation method, which is highly scalable and compatible with
the existing scale-out storage. Specifically, our deduplication
method employs a double hashing algorithm that leverages
hashes used by the underlying scale-out storage, which ad-
dresses the limits of current fingerprint hashing. In addition,
our design integrates the meta-information of file system and
deduplication into a single object, and it controls the deduplica-
tion ratio at online by being aware of system demands based on
post-processing. We implemented the proposed deduplication
method on an open source scale-out storage. The experimental
results show that our design can save more than 90% of the
total amount of storage space, under the execution of diverse
standard storage workloads, while offering the same or similar
performance, compared to the conventional scale-out storage.

1. Introduction

Data is exploding and generated in just the last year
is expected to be more than that in the entire previous of
industry. To store this massive volume of data more effi-
ciently, both scalable storage and a data reduction technique
such as deduplication are needed. Therefore, the scale-out
storage such as GlusterFS [16] and Ceph [18] is exploited
in diverse computing domains, ranging from a small cluster
to distributed system and to high performance computing,
because they can expand their capacity on demand. Also,

• Myoungwon Oh∗§ is with Seoul National University.

an Object Chunking
Algorithm C1 C2 C3 C4

Fingerprint index (fingerprint : address)

C0 C2 C3 C4 C5 C6

Hash(C0) : 0

0 1 2 3 4 5
Chunk

Address

Hash(C4) : 3
Hash(C2) : 1
Hash(C5) : 4

Hash(C3) : 2
Hash(C6) : 5

Chunks

Figure 1: Traditional data deduplication system.

many previous studies [7] [8] [31] [34] demonstrated that
data deduplication can reduce lots of redundant data with
a low overhead, which makes applying data deduplication
on distributed storage systems promising to maximize stor-
age capacity of diverse systems. However, simply applying
deduplication is inappropriate for distributed storage en-
vironments because it removes all extra copies appended
by redundancy scheme. In a distributed environment, em-
ploying redundancy scheme such as replication and erasure
coding [2] [3] [4] is required to achieve a high availability
against frequent failures of the underlying storage. There-
fore, a design of global data deduplication that not only
removes the redundant data but also preserves underlying
redundancy scheme residing in the existing scale-out storage
system is required.

However, applying data deduplication on the existing
distributed storage system considering redundancy scheme
is non-trivial due to its data processing procedure and addi-
tional metadata management. Figure 1 shows an example of
data processing observed in a traditional data deduplication
method [5] [6]. In this example, the input source as a data
object is split into multiple chunks by a chunking algorithm.
The deduplication system then compares each chunk with
the existing data chunks, stored in the storage previously.
To this end, a fingerprint index that stores the hash value
of each chunk is employed by the deduplication system
in order to easily find the existing chunks by comparing
hash value rather than searching all contents that reside in
the underlying storage. Even though aforementioned dedu-
plication process is straightforward to be implemented for
many systems, it does not work well with the existing scale-
out storage systems because of the following reasons. First,
managing scalability of fingerprint index can be problem-
atic with a limited working memory size. Specifically, the
fingerprint index is one of the most essential and expen-

1063

2018 IEEE 38th International Conference on Distributed Computing Systems

2575-8411/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDCS.2018.00106

sive components in modern data deduplication systems [12]
[5] [33] [37]. As storage capacity grows, the size of the
fingerprint index increases proportionally. In other words,
the fingerprint index cannot be stored in working memory.
Note that for fast comparison, a fingerprint index should be
located in memory. In addition, there are more problems
regarding the management of such fingerprint index. If the
underlying storage is a shared-nothing distributed system
that has no centralized metadata server (MDS), there is
no explicit space to locate the fingerprint index. Second, it
is complex to ensure compatibility between newly applied
deduplication metadata and existing metadata. To apply
deduplication metadata such as reference counts and fin-
gerprint indexes, a new solution that incorporate them with
existing storage system is required. Third, we need to solve
performance degradation due to additional operations by
adding deduplication. Deduplication requires a fingerprint
operation and an additional I/O operation on the storage
system, therefore, performance can be degraded. Especially,
if foreground I/O is affected by background deduplication,
serious performance degradation could occur. Also, dedu-
plication of frequently used data will result in unnecessary
I/O and eventual performance degradation.

In this paper, we propose a unified data deduplication
design with the following characteristics. We effectively re-
move the fingerprint index by leveraging underlying storage
system’s existing hash table (Double hashing), and extend its
metadata structure to effectively support data deduplication
(Self-contained object). Also, performance degradation is
minimized through rate control and selective deduplication
based on post-processing. We implemented the proposed
design upon open source distributed storage system, Ceph
[18].

There are a few studies on data deduplication to apply
it into the existing distributed (or clustered) storage systems
[9] [10] [11]. Unfortunately, they depend on MDS, which
keeps metadata independently for management and storage
thereby introducing multiple single point of failure (SPOF).
Even though HYDRAstor [35] has no dependency with
MDS, its design cannot easily integrated into the existing
scale-out storage that supports a high availability, data re-
covery, and data re-balancing. The main reason behind this
challenge is that its data structures for data deduplication are
separated from data store. Therefore, such storage features
for the data store cannot cover the additional data structures
of data deduplication such as fingerprint index and reference
count.

The main contributions of this paper can be summarized
as follows:

(1) An effective deduplication approach to support high
availability and high performance in distributed storage
system: we provide deduplication design that is applicable
on replication or erasure coding and minimize performance
degradation caused by deduplication.

(2) A unified data deduplication design for distributed
storage system: the proposed design does not require an ad-
ditional fingerprint index or data structure for deduplication
without any modification of existing storage structure.

Client

Metadata Server

(OID, Offset ,Size)

(a) An ordinary MDS-based
distributed storage
(Centralized).

Client

(OID, Offset ,Size)

Client

Hash
Algorithm

(b) An ordinary HT-based
distributed storage
(Decentralized).

Client

Hash
Algorithm

(OID, Offset ,Size)(OID, Offset ,Size)

Figure 2: Overview of distributed storage systems.

(3) Minor changes for the existing distributed storage
systems: for distributed hash table based scale-out storage
system, only a few code modification is required to support
data deduplication. In our implementation on Ceph, only
about 4K of lines are added or modified.

2. Background
2.1. Target Distributed Scale-out Storage System

Distributed scale-out storage systems can be classified
based on how they share information: Centralized or de-
centralized (shared-nothing). In the centralized storage, a
metadata server (MDS) stores connecting information be-
tween a data and a storage and in the decentralized storage, a
hash algorithm determines the placement of a data. Figure 2
depicts these two types of distributed storage system. All the
client requests (e.g., object ID, offset and size) are translated
by an MDS or a hash algorithm. Specifically, Figure 2-
(a) shows the organization of an ordinary MDS-based dis-
tributed storage system. All requests, targeting to the storage
server need to pass to the MDS in obtaining metadata, which
in turn makes MDS performance an important factor for
the whole storage system. In addition, it requires to provide
the availability of MDS in order to cope with failure case.
Lustre [14], GFS [13], and pNFS [15] are implemented by
this MDS based design.

On the other hands, this design should consider a single
point of failure (SPOF) problem and scalability of MDS.
Figure 2-(b) shows an ordinary hash table based distributed
storage system, which employs the shared-nothing structure
and decentralizes given objects without MDS. Incoming
requests are constantly translated by the hash table. Thanks
to their superiority in terms of scalability and availability,
many recent scale-out storage systems such as Ceph [18],
GlusterFS [16], Swift [17], Dynamo [19] and Scality [20]
are developed based on the decentralized structure. In Ceph,
CRUSH algorithm is used for object distribution and Glus-
terFS uses distributed hash table (DHT) based algorithm to
distribute objects efficiently. In this paper, we aimed at a
decentralized shared nothing storage system for the higher
scalability and availability.

2.2. Deduplication Range
Applying deduplication to the existing distributed stor-

age systems is complex because we need to deduplicate all
data while keeping the rules of the existing systems. One of

1064

4.20
12.98 8.96

32.53

50.02

21.53

50.01

80.01

35.96

80.60
92.73

44.80

0

20

40

60

80

100

FIO
Dedup
50%

FIO
Dedup
80%

SFS DB
(LD1)

SFS DB
(LD3)

SFS DB
(LD10)

SKT
Private
Cloud

Local Dedup. Global Dedup.

D
ed

up
lic

at
io

n
R

at
io

 (%
)

Figure 3: Deduplication ratio comparison between global dedupli-
cation and local deduplication. For this experiment, 4 Ceph storage
nodes are used and each node has 4 OSDs (Object Storage Device).
Local deduplication targets per-OSD basis and global deduplication
targets all 16 OSDs.

4 OSD 8 OSD 12 OSD 16 OSD
Local Dedup. 15.5 % 8.1 % 5.5 % 4.1 %
Global Dedup. 50.0 % 50.0 % 50.0 % 50.0 %

TABLE 1: Deduplication ratio comparison between global dedu-
plication and local deduplication depends on the number of OSD.
Workload is a FIO workload with deduplication ratio of 50%.

the most straightforward ways that can deduplicate without
any violation against the policies of underlying storage sys-
tem is to individually apply the deduplication to each single
node by a leveraging block level deduplication solution such
as [29] [28]. The most compelling advantage of this local
deduplication is that distributed storage system’s various
policies can be consistently maintained because most of
them operate on per-node basis: data replication, erasure
coding, and data balancing. However, the local deduplication
suffers from a limited deduplication ratio compared to global
deduplication.

Figure 3 compares the deduplication ratio of local
deduplication and global deduplication by executing micro
benchmarks and real workloads that SK maintains for pri-
vate cloud. Specifically, it includes two FIO [38] workloads
with different deduplication ratio (size: 5GB), three SPEC
SFS 2014 [39] database workloads with different loads (size:
24GB) and a real word workload of enterprise cloud data in
our private cloud (size: 3.3TB). Our private cloud has about
100 VMs for developers ranging from 50GB to 500GB,
and the data excluding OS images is over-provisioned in
Ceph. More detailed experimental environment is described
in Section 6. In the first two workloads, which are artificially
formed by FIO, the local deduplication shows severely
low deduplication ratio while global deduplication shows
the same results as given deduplication ratios. In the SFS
DB workloads, the local deduplication still shows two to
four times lower deduplication ratio than that of global
deduplication based on given loads. With our private cloud
workloads, the difference of deduplication ratio between the
two methods is still around two times. This result shows that
the limited deduplication ratio problem of local deduplica-
tion has a negative effect not only on synthetic workload but
also on real environment. In addition, as the number of OSD
increases, the gap between local deduplication and global

Distributed Storage System

Data

Deduplication Engine

Data

Data Replication

Data Recovery
Fingerprint index
(Fingerprint : Address)

Recipe store
(Address : Chunk ,
Reference count)

Write

Read

Figure 4: Common approach to support data deduplication.

deduplication increases, as shown in Table 1. This illustrates
that the larger the size of the distributed system, the more
significant the problem of limited deduplication ratio of
local deduplication becomes. In this paper, we target global
deduplication for a distributed storage system to achieve a
higher deduplication ratio.

3. Problem and Key Idea
3.1. Problem Definition

In this Section, we will define practical problems to
apply deduplication on distributed storage system.

Scalability of fingerprint index: There are two chal-
lenges to manage scalability of fingerprint index: how to
lookup fast and how to distribute evenly. First, the increased
fingerprint index makes fast memory lookup difficult. For
example, if an entry of fingerprint index needs at least 32
bytes, not only huge storage capacity is needed but also
fingerprint index cannot reside in memory when storage
capacity reaches more than hundreds of PB. Therefore,
fingerprint-lookup degrades overall performance. Many pre-
vious studies [12] [33] [37] proposed representative finger-
print techniques to reduce the size of index table. Repre-
sentative fingerprint based approaches have an advantage
of small index table, but they cannot remove all of the
duplicated chunks. Moreover, in distribute storage system,
theoretically, fingerprint index will grow unlimitedly even
though their policy is maintaining a small set.

Another challenge is how to locate and distribute the fin-
gerprint index equally. The existing method is a centralized
metadata server (MDS) [9] [10] [11]. However, if MDS is
used, it causes the other problems: SPOF and performance
bottleneck. Because of these problems, a new distribution
method for deduplication metadata that is suitable for de-
centralized scale-out systems is needed.

Compatibility between the newly applied dedupli-
cation metadata and exiting metadata: Most previous
works have external metadata structure for deduplication
metadata since this design can be implemented relatively
easily [5] [35] [10]. However, additional complex linking
between deduplication metadata and existing scale-out stor-
age system is required. Figure 4 shows a conceptual diagram
of common approach to support data deduplication. For
example, if we add fingerprint index or reference count in-
formation for deduplication, the underlying system’s storage
features do not recognize these additional data structure.
Therefore, the storage features such as high availability or
data recovery cannot work for the external data structure.
These features must be implemented separately in the ex-
ternal data structure. Even worse, it is hard to guarantee that

1065

32KB
write

0
200
400
600
800

Workload

M
B/

s

Original Inline

0 50 100 150 200 250 300
0

200
400
600
800

Time (second)

M
B

/s
(a) Partial write problem.

(inline processing)
(b) Interference problem.

(post processing)

Figure 5: Performance degradation brought by the existing dedu-
plication method.

the modified or added module works correctly or not. The
correctness for high availability is critical for reliability.

Minimizing performance degradation: There are also
two challenges to minimize performance degradation on
applying deduplication. First, when to start deduplication
needs to be considered. The methods of a deduplication can
be also classified based on deduplication timing: inline and
post-processing. Inline deduplication removes the redundant
data immediately, while introducing additional deduplication
latency at runtime. Although this approach is slower than
post-processing, it has the advantage that no additional spcae
for temporal store is required [25]. In contrast, the post-
processing deduplication conducts deduplication in back-
ground process, which exhibits a better performance than in-
line. However, a foreground I/O request can be interfered by
the background deduplication process. The both approaches
have their own pros and cons respectively. Therefore, it is
necessary to devise what is the ideal solution for distributed
system. For better understanding, we configured the same
experimental environment used in the evaluation section
(cf. Section 5) and conducted the experiment by issuing a
sequential write (foreground I/O) while inline processing
is enabled or a background deduplication thread operates.
We observe the performance problem of each deduplication
method. Figure 5-(a) illustrates the partial write problem
of inline processing. In this experiment, a foreground I/O
service is issued using 16KB block size while the chunk
size is 32KB. Therefore, the I/O service can be finished after
its read-modify-write is completed (reading 32KB chunk ⇒
modifying 16KB data ⇒ writing 32KB chunk). This causes
significant performance degradation. Figure 5-(b) depicts
foreground I/O interference problem. The throughput of the
foreground I/O slows from 600MB/s to 200MB/s.

Second, how to deal with hot data needs to be consid-
ered. Applying deduplication to frequently used data causes
the overhead because it will be updated soon again. If
deduplication is continuously applied on hot data during
I/O, unnecessary frequent I/O for deduplication will cause
performance degradation.

3.2. Key Idea
Double hashing: To solve the fingerprint index problem,

we propose a Double hashing mechanism. The key mech-
anism of fingerprint index is to detect redundant chunks
faster. In a traditional deduplication, a hash value of a chunk
and a location of the chunk are mapped in the fingerprint

(b) An ordinary OID-based
distributed Storage.

(c) A content-hashed OID-based
distributed Storage.

Client1

A AB C D

Client3Client2

A

Hash algorithm

OID = 1 OID = 2 OID = 3

Client1 Client3Client2

B C DA

Hash algorithm

Hash (1’
content)

= K

Hash (2’s
content)

= K

Hash (3’s
content)

= K

OID = 1 OID = 2 OID = 3

Obj ID
Content

1
A

2
A

3
A

4
B

5
C

6
D

(a) ObjID – content relation.

OID = K OID = K OID = K

Figure 6: An ordinary hashing in distributed storage system and
Double hashing in the proposed system.

index. So, when we query a new chunk’s hash value to the
fingerprint index, we can retrieve its location. Interestingly,
a distributed storage system has similar mechanism [5].
A distributed hash algorithm determines the location of
an object. One difference is the input value for the hash
algorithm. Namely, a hash value of a chunk is an input
for a deduplication system and object ID is an input for
a distributed storage system.

The key idea of the Double hashing is to combine these
two mismatched input value. Figure 6 depicts this idea.
Figure 6-(a) shows a relationship between an object ID of
data and its contents. In this example, object ID 1, 2, 3
have the same contents. Figure 6-(b) shows an ordinary
distributed storage system addressed by object IDs. Each
client can find an object data for an object ID using pre-
defined hash algorithm. e.g. CRUSH algorithm in Ceph and
DHT algorithm in GlusterFS. However, since there is no
relationship between content and object ID, the same data
could exist across multiple storage nodes. In this situation,
to find the same contents for deduplication, traversing all
the storage node or maintaining a big fingerprint index is
required. We remap the ordinary policy-based object ID
(object ID 1, 2, 3) to the new content-based object ID
(object ID K) by using an additional hashing as shown in
Figure 6-(c). Thus, the distributed hash table will inform the
location of given object associated with its content [21]. By
employing this mechanism, we can remove the fingerprint
index itself and preserve the scalability of the underlying
storage system.

This mechanism gives following advantages. First, it
gracefully removes the fingerprint index that can be a signif-
icant problem when applying deduplication to the scale-out
distributed storage system. Second, it preserves the original
scalability of underlying distributed storage system. Third,
no modification is required on client side because the client
request is based on the original object ID.

Self-contained object: We design a self-contained ob-
ject for data deduplication to solve the external deduplica-
tion metadata problem. As described, the external design
makes difficult for integration with storage feature sup-
port since existing storage features cannot recognize the
additional external data structures. If we can design data
deduplication system without any external component, the
original storage features can be reused. Figure 7 shows the

1066

Proposed Data Structure

Data Data

Data Replication

Data Recovery

Deduplication Engine Data for Dedup. Data for Dedup.

Figure 7: Deduplication data self-contained data structure.

concept of it. To this end, we extend the underlying stor-
age’s metadata to contain deduplication information. Note
that, modern distributed storage systems have an extended
attribute field (xattr) for this purpose.

Deduplication rate control & selective deduplication
based on post-processing: Our key idea for minimizing
performance degradation is post-processing with rate control
and selective deduplication. In our design, background dedu-
plication threads periodically conduct a deduplication job,
and this background I/O is controlled through rate control.
We also maintain the object’s hotness, which can make
sure that the hot object is not deduplicated until its state
is changed.

As mentioned in Section 3.1, the inline deduplication has
the advantage of space efficiency. However, it cannot avoid
to exhibit an additional latency due to the inline process-
ing. For example, in a distributed system, metadata lookup
and data processing for deduplication chunk occurs in the
network. Therefore, latency can be longer than the latency
of metadata and data processing on a local node. In inline
processing, this overhead can be huge because deduplication
should be immediately executed. For this reason, inline
processing is hard to guarantee the performance. On the
other hand, we can achieve two major benefits by using post-
processing. First, with ratio control, constant throughput is
guaranteed. Post-processing can hide that latency problem
because foreground I/O is handled as existing method and
background deduplication thread executes a deduplication
job later. However, the worst case should be considered
that the foreground I/O job is interfered by the background
deduplication tasks as shown in section 3-3. Therefore, if we
add rate control technique, foreground I/O interference can
be minimized. Second, it can give a chance that frequently
modified object does not need to be deduplicated. In post-
processing, background deduplication threads read the data
and then, they conduct deduplication process. Therefore, we
can control whether or not the hot object is deduplicated.

4. Design
4.1. Object

Storage features such as high availability, data recov-
ery and various data management operations are per-object
basis. Therefore, if we define all data deduplication infor-
mation into an object, the underlying distributed storage
system can handle the complicated storage features with-
out an additional modification. In our design, an object is
classified into two types based on the information stored in:
metadata object and chunk object. Each of them has their
own object metadata. Although chunk objects and metadata
objects have a different purpose from existing objects, they

can be handled the same way as existing objects because
they are self-contained objects. Therefore, distributed stor-
age system can handle distributed storage-dependent jobs
such as replication, erasure coding or data rebalancing for
each object without additional operations.

Metadata object: Metadata objects are stored in the
metadata pool, which contains metadata for data dedupli-
cation. In a data deduplication system, data is divided into
multiple chunks according to its chunking algorithm in de-
tecting redundancy more effectively. The ID of the metadata
object is a user-visible ordinary object ID, provided by the
underlying distributed storage system. In a metadata object,
a chunk map that links an object to chunks is stored based
on its offset. As shown in Figure 8, a chunk map consists of
offset range, chunk ID, cached bit and dirty bit. Offset range
and chunk represent mapping information between metadata
object and chunk object. Cached bit and dirty bit describe
status of a chunk. If the cached bit is true, the chunk is
stored in the metadata object. Otherwise, it is stored in the
chunk object of chunk pool. A detailed explanation of the
chunk pool is provided in Section 4.2. If the dirty bit is true,
processing deduplication on the chunk is needed. If cached
bits for all chunk map entry are false, there is no cached
data in the object’s data part. In figure 8, object 2 depicts
this case. The type of object 2 is metadata and its chunk
map represents that all of the chunks (object B and C) that
consist the object are not cached. Thus, object 2 contains no
data but only metadata. In contrast, if the cached bit is true,
the chunk is stored inside of the object. In Figure 8, object
1 and 3 are this cases. Detailed policy on chunk caching is
provided in section 4.3 cache manager.

Chunk object: Chunk objects are stored in chunk pool.
Chunk object contains chunk data and its reference count
information. In Figure 8, object B, C and D are chunk
objects. A chunk data is stored in the data part of an object
and reference count information (pool id, source object ID,
offset) is stored in the metadata part of an object. The ID
of a chunk object is determined by chunk’s contents.

4.2. Pool-based Object Management
We define two pools based on the objects stored in.

Metadata pool stores metadata objects and chunk pool stores
chunk objects. Since these two pools are divided based on
the purpose and usage, each pool can be managed more
efficiently according to its different characteristics. Meta-
data pool and chunk pool can separately select redundancy
scheme between replication and erasure coding depending
its usage and each pool can be placed to different storage
location depending on the required performance.

4.3. Cache Manager
Cache manager evaluates whether a chunk needs to be

cached. If a chunk is cached, it is stored in the data part of
the metadata object. By caching hot data, we can remove
the deduplication overhead. However, in practice, caching
an object from the chunk pool to the metadata pool needs a
policy since storing an object causes extra I/O requests and
storage capacity. For example, although there is a single

1067

Chunk Map
Offset range Chunk ID Cached Dirty

0:3 OBJ A True True
4:7 OBJ B False False

Metadata Pool Chunk Pool

Hash algorithm

Chunker

Request: (Obj ID, Offset, Size)
* Obj ID = Chunk ID = FingerPrint (Chunk)

Hash algorithm

Deduplication Engine

Dirty Obj ID List

Object ID: 1
Type: Metadata

Cached chunk:
Object A

Object ID: 2
Type: Metadata

Cached chunk:
Nothing

Object ID: B
Type: Chunk

Ref. Count: 2

Object B
(Ref. by Obj 1,2)

Object ID: C
Type: Chunk

Ref. Count: 1

Object C
(Ref. by Obj 2)

M
et

ad
at

a
D

at
a

O
bj

ec
t

Object ID: 3
Type: Metadata

Cached chunk:
Object C, D

Object ID: D
Type: Chunk

Ref. Count: 1

Object D
(Ref. by Obj 3)

Cache manager

0:3 A T T
4:7 B F F

Chunk Map
ofs ID C D

0:3 B F F
4:7 C F F

Chunk Map
ofs ID C D

0:3 C T T
4:7 D T T

Chunk Map
ofs ID C D

Client

Request: (Obj ID, Offset, Size)

Figure 8: System design. The proposed method consists of metadata pool and chunk pool. Metadata pool contains metadata objects that
contain deduplication metadata and cached chunks. Chunk pool contains deduplicated chunk objects. All object’s location is determined
by their own object ID. In case of chunk object, its object ID is generated by its contents using fingerprint hashing.

chunk in the chunk pool, metadata objects in the metadata
pool can have duplicated chunks. Various cache algorithms
[24] [30] could be applied here but in our experiment, we
used a LRU based approach, which is simple.

4.4. Data Deduplication
As described in the key idea section, the proposed

method mitigates the complexity of duplicate chunk detec-
tion in existing hash mechanisms. Specifically, a chunk is
a basic unit for detecting redundancy of given data. When
a data write request comes to a deduplication system, the
data is split into several chunks. The chunk will be hashed,
and the hashed value (i.e. chunk object ID) will be used
as the input key for the hash algorithm of the underlying
distributed storage system (i.e. chunk pool). As a result, if
two chunks have the same contents, their location in the
storage system is the same and it naturally removes the
duplicates (Double hashing).

4.4.1. Deduplication engine. Since, we choose the post-
processing deduplication, the engine is run by a background
thread. The background deduplication engine begins dedu-
plication with following steps.
(1) Find dirty metadata object which contains dirty chunks
from the dirty object ID list. Note that, all modification or
new write requests for an metadata object are logged into
the dirty object ID list. Figure 8 shows the dirty object ID
list.
(2) Find the dirty chunk ID from the dirty metadata object’s
chunk map. The dirty chunk is cached inside of the dirty
object.
(3) If the cache manager judges that the dirty chunk is dedu-
plication target, the deduplication engine checks whether the
chunk entry corresponding to the dirty chunk already has a
chunk object ID. If it has a chunk object ID, it is referenced
by some chunk object earlier. Therefore, the deduplication
engine sends old chunk object a de-reference message and
wait for its completion. Then, a chunk object is generated
and sent to the chunk pool. At the same time, chunk object
ID is re-evaluated according to its contents. If the dirty
chunk does not have a chunk object ID, the deduplication
engine generates a chunk object and send it to the chunk
pool.

(4) In the chunk pool, the chunk object generated in step 3
is placed in the underlying distributed storage system using
the hash algorithm.
(5) If there is no object at the location which is determined
by the hash algorithm, store the object with reference count
= 1. If there is an object already stored at the location, add
reference count information to the object.
(6) When the chunk write at the chunk pool ends, update
the metadata object’s chunk map. (Deduplication ends)

4.4.2. Deduplication rate control. The proposed post-
processing deduplication system requires additional storage
and network I/O (i.e. data transferring from metadata pool to
chunk pool). So, background deduplication can directly af-
fect on foreground I/O job. To minimize the interference by
the background deduplication job, we control deduplication
rate. Specifically, deduplication rate is controlled depends
on pre-defined watermark value. In order to do that, we
define low-watermark and high-watermark based on IOPS
or throughput. For example, If IOPS is higher than high-
watermark, a single deduplication I/O is issued per 500
foreground I/Os. And a single deduplication I/O is issued
per 100 foreground I/Os between low-watermark and high-
watermark. There is no I/O limitation if IOPS is lower than
low-watermark.

4.5. I/O Path
Write path: Basically, write path is similar with the

underlying distributed storage system because it is post-
processing deduplication. Detailed write steps are as fol-
lows.
(1) Client issues an object write request with object ID,
offset, size with data to the metadata pool.
(2) The hash algorithm in the distributed storage determines
the location of the new object according the object ID and
write the data. If the data size is less than the chunk size,
the missing part is pre-read from the stored chunk object
when cache bit is false and dirty bit is true.
(3) After the data is written in the data part of the object, a
chunk map is created in the metadata part of the object. At
the same time, chunk map entries are created and added to
the chunk map. However, the chunk ID is not determined
yet because it requires content based fingerprint hashing and

1068

Metadata Pool Chunk Pool

Object ID: B
Type: Chunk

Ref. Count: N

Object B

Object ID: 3
Type: Metadata

Cached chunk:
…

-:- - - -
-:- - - -

Chunk Map
ofs ID C D

Client

Write Request

By
Deduplication

Figure 9: Object transaction based consistency support.

it takes an additional latency. The cached bit and dirty bit
are set to true.
(4) Update the dirty object ID list for data deduplication.
(Write path ends)

Read path: Read path is slightly different from the
underlying distributed storage system since it needs to read
metadata and its chunk from metadata pool and chunk pool,
respectively. However, when a chunk is cached, the read
path is similar with the original distributed storage system.
Detailed explanation of read path is as follows.
(1) Client issues an object read request with object ID, offset
and size to the metadata pool.
(2) The hash algorithm in the metadata pool determines the
location of the requested object.
(3) Read the object’s chunk map to find the exact chunk.
(4) a. If the chunk is cached, then read the chunk from the
object’s data part and return the chunk to the client. (Cached
object read path ends)
(4) b. If the chunk is not cached, then read the chunk ID
and issue a read request to the chunk pool using the chunk
ID, an offset and a size. Finally, the object is returned to
the client (Non-cached object read path ends)

4.6. Consistency Model
Since the proposed model separates metadata and data,

consistency should be considered. In the proposed model,
data consistency is achieved by the transactional operation
of underlying storage system. Also, objects that reference
chunks are tracked. In this manner, we can preserve the
consistency correctly.

Figure 9 describes the consistency model step by step.
A client requests a write operation (1). The data is written
as the cached chunk and it’s state is changed by dirty
(2). These operations are a single transaction. Note that
the chunk state is stored as the object’s metadata. After
that, deduplication process is triggered and dirty objects are
found. These objects are flushed to chunk pool (3). Chunk
pool stores flushed data and reference count information
(pool id, source object ID, offset) as shown in (4). If the
object is already existed, just reference count information
will be added. Then, the deduplication result is sent (5),
which in turn the state of dirty object is changed by clean. If
failure occurs at (1), (2), the client can recognize the failure
of write operation because it receives an ack or write time-
out occurs. If failure occurs at (3), (4), chunk’s state is not
cleaned. Therefore, next deduplication process handles this
dirty chunk. If failure occurs at (5), a chunk is stored in the
chunk pool, but dirty state is not cleaned yet. In this case,
the right result will also be sent when deduplication process

is executed again. Since reference data is already stored in
the chunk pool, if reference data already exists, the ack is
sent without storing chunk and reference data.

The weak point of this model is the performance due to
synchronous operations and the overhead of metadata size.
For improving these weak points, we can use a technique
named false positive reference count which strictly locks on
increment but no locking on decrement [23]. However, this
approach needs additional garbage collection process.

5. Implementation Notes on Ceph
We implemented the proposed deduplication method on

top of Ceph.
Metadata pool and chunk pool support: Ceph sup-

ports tiering architecture and we can exploit the tiering to
support metadata pool and chunk pool. Since most modern
distributed storage systems support tiering architecture, it is
easy to port to other storage systems.

Object metadata: We can simply add the additional
metadata such as chunk map or reference counter using
the xattr field and the key value store in the Ceph object
metadata. Since modern distributed storage system supports
xattr field or other similar fields, we can easily apply the
proposed method into other storage systems. Each chunk
entry in chunk map uses 150 bytes. Also, the object in chunk
pool uses additional 64 bytes for reference and a map data
structure for referenced objects. However, if chunk size is
too small, such as 4KB, the number of reference objects and
the size of chunk map will also increase. Therefore, the per-
object space overhead also increases because Ceph’s object
has its own metadata at least 512 bytes.

Chunking algorithm: We apply static chunking algo-
rithm that uses a fixed size chunk because of its simple
implementation and low CPU overhead. Note that small
random write requires high CPU usage of around 60% to
80% on Ceph [40]. It is expected that if the CPU intensive
algorithm such as Contents Defined Chunking is applied,
the overall performance can be degraded because of CPU
limitation [32].

Cache management (hitset & bloomfilter): Cache
management is important for performance. We exploit the
HitSet in Ceph for LRU based Hot/Cold cache. HitSet sus-
tainably maintains recently accessed object set per second
and counts for each object access. If an access count for an
object is higher than pre-defined parameter Hitcount, then
the object is cached into the metadata pool. Since the HitSet
is stored in a storage, the in-memory bloomfilter is used for
existence checking.

6. Evaluation
6.1. Environment setup

We implemented the proposed method on Ceph 12.0.2.
For the experiment, a Ceph cluster is composed of four
server nodes and each server has Intel Xeon E5-2690 2.6Ghz
(12 cores) with 128GB of RAM and four SSDs (SK Hynix
480GB). Totally three client nodes are connected to the
cluster with 10GbE NIC. Each server runs four OSD dae-
mons configured with 2GB journal size and each OSD

1069

0

5

10

15

20

25

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

C
PU

 U
sa

ge
 (%

)

La
te

nc
y

(m
s)

0
5
10
15
20
25

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

C
PU

 U
sa

ge
 (%

)

La
te

nc
y

(m
s)

(b) 8KB random read(a) 8KB random write

Figure 10: Performance of proposed post-processing deduplica-
tion (random write and random read). Bar indicates latency and
solid line indicates CPU usage.

runs on the XFS local filesystem. For the replicated pool,
replication factor is two. We configured static chunk size of
deduplication as 32KB. Our evaluation is based on Ceph’s
block storage service, but the performance of object and
file storage also would be similar because we implement
our proposed design based on Ceph RADOS, a core I/O
part that is common to all three storage systems.

6.2. Performance Comparison
6.2.1. Small Random Performance. Figure 10 shows the
small random performance of the 32KB chunk size system.
We measured the latency and CPU usage of random write
and read in 8KB block size on a single client using FIO (4
threads, 4 iodepth). Original shows the results of the existing
Ceph and Proposed shows the results of the proposed system
with deduplication rate control. Proposed-flush shows the
results when all data is written directly to the chunk pool,
and Proposed-cache shows the results when data is stored
in metadata pool first.

In the case of random write, Proposed ’s latency in-
creases up to 20% and CPU usage is doubled compared
to the existing case. This is because additional works are
required to complete I/O, such as writing metadata (i.e.
chunk map update), reading data for flush, generating fin-
gerprints, and transferring data to the network. Proposed-
flush’s shows the worst result among all the results since
the deduplication processing is executed immediately. Pro-
posed-cache shows similar performance to Original. This is
because its data exists in the metadata pool and only updates
to the chunk map occur.

In the case of random read, we compare the Original
case, Proposed case (the data in the chunk pool), and
Proposed-cache case (the data in the metadata pool). Since
the redirection is needed (the client issues I/O request →
the metadata pool forward client’s I/O request to the chunk
pool → the data is transferred from the chunk pool → the
client receives an ack), Proposed ’s latency is higher than
the others. It can be seen that the random read of cached
objects gives almost similar performance as Original.

6.2.2. Sequential Performance. Figure 11 is the result of
testing FIO 32KB, 64KB, and 128KB sequential perfor-

0
1
2
3
4
5

La
te

nc
y

(m
s)

Original Proposed

0
500

1,000
1,500
2,000
2,500
3,000

Th
ro

ug
hp

ut
 (M

B
/s

) Original Proposed

Figure 11: Sequential performance of proposed post-processing
deduplication (read and write).

16KB 32KB 64KB
Ideal dedup. ratio (%) 46.4 44.8 43.7

Stored data (TB) 1.82 1.88 1.89
Stored metadata (GB) 163 82 41

Actual dedup. ratio (%) 41.7 42.4 43.3

TABLE 2: Deduplication ratio comparison based on chunk size
of 16KB, 32KB, and 64KB.

mance for 32k chunk size system. Throughput and latency
were measured in three 10Gbit clients. All read tests were
done after the data was flushed to the chunk pool.

In the case of read, performance is reduced by half
compared to Original when the block size is small. This is
because the overhead of redirection (from the metadata pool
to the chunk pool) increases in case of small block size (the
less latency is required). However, when the block size is
large, the overhead is relatively reduced. In the 128KB case,
32KB chunks are requested to the chunk pool in parallel, so
that both throughput and latency are improved. Ideally, the
read performance should be similar to the original. However,
due to fragmentation caused by deduplication [26] [27]
(sequential read becomes a random read), performance is
degraded. Our design can not completely remove this over-
head. However, with cache manager, serious performance
degradation will be prevented because hot object is handled
in the metadata pool.

The write performance is measured based on the high-
watermark value. Since the deduplication is performed at a
constant rate in the metadata pool, there is only limited per-
formance degradation compared to the original performance
regardless of the block size requested by the client.

6.3. Space Saving
Table 2 shows the results of deduplication ratio based on

the chunk size. The experiment is performed on our private
cloud shown in Section 2 and all the results are calculated
under excluding the redundancy caused by replication. Ideal
deduplication ratio means deduplication ratio of data only.
It can be observed that deduplication ratio gets lower as the
chunk size gets bigger. Actual deduplication ratio is calcu-
lated by including size of metadata appended to data. In the
proposed method, metadata for metadata objects and chunk
objects is additionally required as explained in Section 4.
The size of this additional metadata grows proportionally as
the chunk size becomes smaller. So, although the smallest
chunk size shows the highest data deduplication ratio, its
actual deduplication ratio is the lowest. On the other hand,

1070

(b) Latency(a) Throughput (c) IOPS (per OP) (d) Latency (per OP) (e) Storage Usage

1

10

100

1,000

10,000

La
te

nc
y

(m
s)

0
5

10
15
20
25
30
35

Th
ro

ug
hp

ut
 (M

B/
s)

1

10

100

1,000

10,000

IO
PS

Replication Proposed EC Proposed - EC

1

10

100

1,000

10,000

La
te

nc
y

(m
s)

0
50

100
150
200
250
300
350
400
450

G
B

Figure 12: SPEC SFS 2014 database workload evaluation. Proposed means proposed method with replication. Proposed-EC means
proposed method with EC. Y-axes for Latency and IOPS are logarithmic scale.

if the chunk size is large, the data deduplication ratio is
reduced, which reduces the overall deduplication ratio again.

6.4. Deduplication Synergy Effect with Storage
Features

6.4.1. High Availability with Deduplication. In this evalu-
ation, we show the detailed results on high availability using
database workload from SPEC SFS 2014 benchmark. A
client created a block device through the KRBD module and
then evaluated with this block device. For experiment, we set
replication scheme configured with replication factor of two
and erasure coding (EC) scheme configured with k=2, m=1.
The workload metric was set to 10, resulting in a total size
of 240GB files. Figure 12 shows various evaluation results
using SPEC SFS 2014. Note that the workload of SPEC
SFS is mixed with read, random read, and random write
simultaneously.

Performance: In Figure 12-(a), the total throughput is
similar in replication and the proposed method. However,
the throughput of EC and Proposed-EC are significantly
lower than those. Note that the database workload in SPEC
SFS 2014 issues fixed number of requests per second.
That’s why there is no difference between replication and
the proposed method. Figure12-(b) shows the total latency
result. Replication shows about 1.26 ms, while the Proposed
method shows to 4.1 ms due to the deduplication processing
overhead. In contrast, EC and Proposed-EC show latency of
2s.

Figure 12-(c) depicts IOPS result for the evaluation of
each operation. Similar to other results, the EC and the
Proposed-EC show low IOPS.

The latency for each operation can be seen in Figure
12-(d). In the case of EC random write, parity calculation is
required unlike replication, and read-modify-write according
to write size is required, which is slower than the result
of the Proposed method. In the case of read, it can be
seen that EC is relatively small in latency gap with the
proposed method due to influence of read-ahead and cache.
However, in case of random read, it is difficult to see
the effect of read-ahead or cache so that higher latency
occurs due to simultaneous reading of widely spread chunks
among several nodes. Therefore, the latency gap between the

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10
To

ta
l I

m
ag

e S
ize

 (G
B)

Number of OS images

rep

ec

rep+dedup

rep+dedup+comp

ec+dedup

ec+dedup+comp

Figure 13: Combination with data compression. The proposed
method can combine with data compression features of underlying
storage system. Totally ten 8GB of Ubuntu Linux VM images are
used for the measurement.

Proposed and Proposed-EC was greater than in the case of
reading.

Storage Saving: Figure 12-(e) shows space usage under
evaluation using SPEC SFS 2014. The replication method
uses 428GB total, but for EC, 320GB was used. The
Proposed method used only 48GB. In SFS workload that
represents the real workload, the significant storage saving
by data deduplication can be observed.

Failed OSDs (#)
1 2 4

Original 68.04 71.35 81.77
Proposed 43.72 44.51 54.78

TABLE 3: 100GB data recovery time measurements (in seconds)
with respect to the increased number of failed OSDs.

6.4.2. Data Recovery Acceleration with Deduplication.
Table 3 shows the recovery time while removing and re-
adding the OSD on each node. The failed OSD indicates
the number of OSDs that have been removed and added in
order to simulate OSDs failure. Totally 100GB of data was
stored at 50% deduplication ratio using replication and the
recovery time was compared between the Proposed case and
Original case. In the case of applying Proposed , data size to
be recovered is 50% smaller than Original case due to data
deduplication. As a result, Proposed can make significant
benefit for the data recovery time.

6.4.3. Combination with Data Compression For Maxi-
mized Capacity Saving. One of the common ways to save

1071

1 51 101 151 201 251 301
0

100
200
300
400
500
600
700
800

Time (second)

Th
ro

ug
hp

ut
 (M

B
/s

)
Dedup w/ Rate Control No deduplication (Ideal) Dedup w/o Rate control

Figure 14: Dedup rate control

storage space is data compression. Modern file systems such
as ZFS or Btrfs natively support this feature. Since a Ceph
node works on a local file system, a Ceph node can use data
compression feature. We can maximize storage saving with
data compression feature. For this experiment, we use Btrfs
for local filesystem. Figure 13 shows the combined result
of capacity reduction between replication, EC, compression
and deduplication. Totally ten 8GB of Ubuntu VM images
that are running in our private openstack cinder service. The
OS images are the same but user home data are different.
The x-axis represents the cumulative number of OS images
and the y-axis represents the total occupied space. Note that
the y-axis is logarithmic scale. Replication occupies 160GB
of space (8GB x 10 images x 2 replications). For EC, we
set 2+1 configuration that uses 2 disks for data and 1 disk
for reconstruction data. For EC 2+1, therefore, totally 120
GB are occupied. In the experiment, the actual footprint
when using the proposed data deduplication with replication
is approximately 2.2GB. In addition, when one VM image
is added to the cluster, only about 200MB is added. This
is because there is lots of redundant data between VMs
using the same OS. As depicted, EC + deduplication +
compression achieves maximum capacity saving.

6.5. Deduplication Rate Control
We could minimize the foreground I/O job interference

by background deduplication processing using deduplication
rate control (pre-defined high-watermark value is used).
Figure 14 shows throughput of a foreground thread that
issues sequential write while background deduplication job
is processing. When there is no deduplication (Ideal case-
green solid line) throughput goes around 500-600MB/s.
However, it significantly decreased to 200MB/s when a
background deduplication job is processing (black dotted
line). The proposed deduplication rate control shows almost
400-500MB/s even if there is a background deduplication
job (black solid line).

7. Related Works
HYDRAstor [35], HydraFS [36] designed a distributed

storage system that can deduplicate via content-addressed
and DHT similar to this paper. However, the following
points are different: First, in those papers, content-based
hash must be created in the client library or filesystem for
addressing. On the contrary, this study not only generates

hash by post-processing but also maintains the I/O path used
in existing shared-nothing storage system. Therefore, the
client does not cause latency due to hashing and can main-
tain the performance of underlying system by selectively
performing deduplication. Second, although [35] [36] de-
signed its own data placement and recovery function based
on DHT, in this paper, it is possible to make dedup data
based on existing object, so recovery and rebalance function
can be re-used. Therefore, a reliable service can be easily
applied. Third, the target of this paper is the existing shared-
nothing scale-out storage system which does not consider
deduplication. Fourth, [35] [36] mainly consider throughput
and are based on backup system. On the other hand, this
paper focuses on not only throughput but also latency for
primary storage.

Venti [21], Sean C. Rhea et al. [22] used the same
method in that it uses the fingerprint value generated from
data content as the OID. However, the following points
are different. First, because [21] manages metadata and
data separately, a mechanism for recovery and re-balance is
required. On the other hand, this paper treats both metadata
and data as objects, so it utilizes the recovery function of
existing storage. Second, [21] should generate the fingerprint
of the data content unconditionally in order to specify the
address, but this paper can gain the performance advantage
because it can store the data in the metadata pool and decide
to perform the deduplication selectively. Third, [21] is an
archival storage and it is used only for specific purposes with
low performance. However, in this paper, it can be applied
to existing block, file and object interface structure by
optimizing performance and ensuring consistency. Fourth,
existing CAS-based storage systems, including [21] [22]
are centralized and therefore sensitive to the performance
of the central server. However, in this paper, the scale-out
performance is guaranteed.

Austin T. Clements et al. [1] implemented deduplication
between VMFSs. They also propose the design without
metadata server. However, only the VMFS environment is
considered, not the distributed storage system, and the data
location is defined by defining a separate block mapping for
the VM image.

8. Conclusion
In this paper, we present a global deduplication design

for current shared-nothing scale-out storage system, which
can be combined with existing storage features such as high
availability, data recovery while minimizing performance
degradation.

9. Acknowledgement

This research was partly supported by National Research
Foundation of Korea (2015M3C4A7065646).

References

[1] Austin T. Clements, Irfan Ahmad, Murali Vilayannur, Jinyuan Li:
Decentralized Deduplication in SAN Cluster File Systems. USENIX
Annual Technical Conference 2009

1072

[2] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, Kan-
nan Ramchandran: EC-Cache: Load-Balanced, Low-Latency Cluster
Caching with Online Erasure Coding. OSDI 2016: 401-417

[3] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J.
Li, and S. Yekhanin. Erasure coding in Windows Azure Storage. In
USENIX ATC, 2012

[4] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S.
Shankar, V. Sivakumar, L. Tang, and S. Kuamr. f4: Facebook’s warm
BLOB storage system. In OSDI, 2014.

[5] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen, Wen Xia,
Yucheng Zhang, Yujuan Tan: Design Tradeoffs for Data Deduplica-
tion Performance in Backup Workloads. FAST 2015: 331-344

[6] Biplob K. Debnath, Sudipta Sengupta, Jin Li: ChunkStash: Speeding
Up Inline Storage Deduplication Using Flash Memory. USENIX
Annual Technical Conference 2010

[7] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean, Jin Li,
Sudipta Sengupta: Primary Data Deduplication - Large Scale Study
and System Design. USENIX Annual Technical Conference 2012:
285-296

[8] Dutch T. Meyer, William J. Bolosky: A Study of Practical Dedupli-
cation. FAST 2011: 1-13

[9] Joo Paulo, Jos Pereira: Efficient Deduplication in a Distributed Pri-
mary Storage Infrastructure. TOS 12(4): 20:1-20:35 (2016)

[10] Tianming Yang, Hong Jiang, Dan Feng, Zhongying Niu, Ke Zhou,
Yaping Wan: DEBAR: A scalable high-performance de-duplication
storage system for backup and archiving. IPDPS 2010: 1-12

[11] Xun Zhao, Yang Zhang, Yongwei Wu, Kang Chen, Jinlei Jiang, Keqin
Li: Liquid: A Scalable Deduplication File System for Virtual Machine
Images. IEEE Trans. Parallel Distrib. Syst. 25(5): 1257-1266 (2014)

[12] Wen Xia, Hong Jiang, Dan Feng, Yu Hua: SiLo: A Similarity-Locality
based Near-Exact Deduplication Scheme with Low RAM Overhead
and High Throughput. USENIX Annual Technical Conference 2011

[13] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google
file system. SOSP 2003: 29-43

[14] Lustre, http://lustre.org/

[15] pNFS, http://www.pnfs.com/

[16] Glusterfs, https://www.gluster.org/

[17] Swift, https://docs.openstack.org/swift/latest/

[18] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long,
Carlos Maltzahn: Ceph: A Scalable, High-Performance Distributed
File System. OSDI 2006: 307-320

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, Werner Vogels: Dynamo: amazon’s highly
available key-value store. SOSP 2007: 205-220

[20] Scality, http://www.scality.com/

[21] Sean Quinlan, Sean Dorward: Venti: A New Approach to Archival
Storage. 89-101

[22] Sean C. Rhea, Russ Cox, Alex Pesterev: Fast, Inexpensive Content-
Addressed Storage in Foundation. USENIX Annual Technical Con-
ference 2008: 143-156

[23] Zhuan Chen, Kai Shen: OrderMergeDedup: Efficient, Failure-
Consistent Deduplication on Flash. FAST 2016: 291-299

[24] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri Narasimhan, Tony
Zhang, Ming Zhao: CacheDedup: In-line Deduplication for Flash
Caching. FAST 2016: 301-314

[25] Kiran Srinivasan, Timothy Bisson, Garth R. Goodson, Kaladhar Voru-
ganti: iDedup: latency-aware, inline data deduplication for primary
storage. FAST 2012: 24

[26] Benjamin Zhu, Kai Li, R. Hugo Patterson: Avoiding the Disk Bot-
tleneck in the Data Domain Deduplication File System. FAST 2008:
269-282

[27] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat: Improving re-
store speed for backup systems that use inline chunk-based dedupli-
cation. FAST 2013: 183-198

[28] Bo Mao, Hong Jiang, Suzhen Wu, Lei Tian: POD: Performance
Oriented I/O Deduplication for Primary Storage Systems in the Cloud.
IPDPS 2014: 767-776

[29] Permabit, http://permabit.com/

[30] Jingwei Ma, Rebecca J. Stones, Yuxiang Ma, Jingui Wang, Junjie
Ren, Gang Wang, Xiaoguang Liu: Lazy exact deduplication. MSST
2016: 1-10

[31] Zhen Sun, Geoff Kuenning, Sonam Mandal, Philip Shilane, Vasily
Tarasov, Nong Xiao, Erez Zadok: A long-term user-centric analysis
of deduplication patterns. MSST 2016: 1-7

[32] Yinjin Fu, Hong Jiang, Nong Xiao: A Scalable Inline Cluster Dedu-
plication Framework for Big Data Protection. Middleware 2012: 354-
373

[33] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar,
Greg Trezis, Peter Camble: Sparse Indexing: Large Scale, Inline
Deduplication Using Sampling and Locality. FAST 2009: 111-123

[34] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J.
Kunkel. A Study on Data Deduplication in HPC Storage Systems. In
SC’12, Nov. 2012.

[35] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk,
Wojciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cris-
tian Ungureanu, Michal Welnicki: HYDRAstor: A Scalable Sec-
ondary Storage. FAST 2009: 197-210

[36] Cristian Ungureanu, Benjamin Atkin, Akshat Aranya, Salil Gokhale,
Stephen Rago, Grzegorz Calkowski, Cezary Dubnicki, Aniruddha
Bohra: HydraFS: A High-Throughput File System for the HYDRAs-
tor Content-Addressable Storage System. FAST 2010: 225-238

[37] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long, Mark Lillib-
ridge: Extreme Binning: Scalable, parallel deduplication for chunk-
based file backup. MASCOTS 2009: 1-9

[38] FIO, https://github.com/axboe/fio

[39] SPEC SFS 2014, https://www.spec.org/sfs2014/

[40] Myoungwon Oh, Jugwan Eom, Jungyeon Yoon, Jae Yeun Yun, Se-
ungmin Kim, Heon Y. Yeom: Performance Optimization for All Flash
Scale-Out Storage. CLUSTER 2016: 316-325

1073

